o DesignBuilder
05/07/22

Extensibility Tools User Guide

for DesignBuilder v7.1

Overview

DesignBuilder may be extended via scripts or plugins. Each system is targeted at a different use-case
and different levels of complexity. Both systems may be used at the same time, and multiple active
plugins and scripts are supported.

Scripts are intended to hook into certain stages of a DesignBuilder simulation in order to modify or
report on the process. Plugins are a superset of Scripts, providing extra functionality such as the
ability to create a custom sub-menu in DesignBuilder’s main-menu, which may allow for ad-hoc
processing of DesignBuilder data.

Scripts can be written in the C# or Python programming languages. Plugins are written in the C#
programming language.

The DesignBuilder API

DB.Api.Environment

For C#, DesignBuilder exposes its API to both extensibility systems by setting the ApiEvironment
property on the IProperties interface, which IScript and IPlugin inherit. The Api.Environment object is
the root API object, which can be used to access the rest of the API.

For Python, the global variable api_environment is set.

During start-up, DesignBuilder instantiates a single DB.Api.Environment object. This singleton object
is used by all active scripts and plugins, and as such, a script or plugin cannot rely on the state of the
system at any given time. For example, suppose a script modifies the system at point Aiin a
simulation. The script is then called again at point B and may expect the state of the system to be as
it was at point A. However, it is possible that another script or plugin (or even DesignBuilder itself)
also modified the system between point A and B. We therefore suggest that no assertions are made
about the state of the system at any given point.

DB.Api.Environment is partitioned into several major areas, including:

e CFD operations, accessible via DB.Api.Environment.CfdOperations, which exposes
functionality relating to DesignBuilder’s CFD system

e Event subscriptions, accessible via DB.Api.Environment.Events, which allow for scripts and
plugins to be notified of certain changes to the system

e HVAC operations, accessible via DB.Api.Environment.HvacOperations, which exposes
functionality relating to DesignBuilder’s HVAC system

e Site operations, accessible via DB.Api.Environment.Site, which exposes functionality relating
to the active site. Functionality relating to Buildings, Blocks, Zones, Surfaces, etc can be
accessed from the Site object

e Environment operations, accessible directly from DB.Api.Environment, which exposes a lot
of miscellaneous functionality such as undo/redo, navigation, etc

o DesignBuilder
05/07/22

Object Attributes

DesignBuilder uses object attributes to store much of the data for any given object (such as a
building, block, zone, etc). An attribute is simply a key-value pair of strings that can be accessed via
the GetAttribute and SetAttribute methods on any object that supports attributes.

For example, to get the occupancy density for a zone you would use
DB.Api.Zone.GetAttribute(“OccupancyValue”). To set the occupancy density to 0.1 you would use
DB.Api.Zone.SetAttribute(“OccupancyValue”, (0.1).ToString()).

Generally, an object can have a lot of attributes and it is impractical to list and describe each one.
Nevertheless, to get full use of the API you will need to know an attribute’s name, or key, so that you
can access or change its value. To help with this, you can enable DesignBuilder to show an attribute’s
name in a tooltip in DesignBuilder’s GUI. To do this, simply enable Tools > Program options >
Interface > Interface Style > Show attribute names in tooltips (you will need to enable “Show
Tooltips in Model data” first, if it is not already enabled).

With “Show attribute names in tooltips” enabled, you can hover over an attribute in DesignBuilder
and the tooltip will display that attribute’s name, which you can then use with GetAttribute and
SetAttribute. For example:

i Docupancy

Oeoccupancy density (people/mz) [01170 |
[y Schedule Office_OpenCiff | Occupancy density (people/ma)

Attribute name: OccupancyValue

DesignBuilder Hooks

During a DesignBuilder simulation, DesignBuilder can pass control to a script or plugin at certain
points in the process. These points are called hook points, or hooks, or call points. Both scripts and
plugins have access to the same hooks and any implemented hooks are called for each active script
and plugin. That is to say, if you have 2 active plugins and 3 active scripts, all of which implement the
same hook, DesignBuilder will pass control to all 5 hooks in the following order: All scripts in the
order they appear in the Script Manager, followed by all plugins in alphabetical order of the plugin’s
assembly name.

The following hooks are available, with each hook point (in a category) being called in the order they
are written:

Simulation:

e BeforeEnergyldfGeneration (C#)/before_energy_idf_generation (Python) is called
immediately before the EnergyPlus IDF file is created

e BeforeEnergySimulation (C#)/before_energy_simulation (Python) is called immediately
before an EnergyPlus simulation starts

e AfterEnergySimulation (C#)/after_energy_simulation (Python) is called immediately after
an EnergyPlus simulation has finished

e BeforeHeatingldfGeneration (C#)/before_heating_idf_generation (Python) is called
immediately before the EnergyPlus IDF file is created for a Heating design simulation

e BeforeHeatingSimulation (C#)/before_heating_simulation (Python) is called immediately
before a Heating design simulation starts

o DesignBuilder

05/07/22

AfterHeatingSimulation (C#)/after_heating_simulation (Python) is called immediately after
a Heating design simulation has finished

BeforeCoolingldfGeneration (C#)/before_cooling_idf_generation (Python) is called
immediately before the EnergyPlus IDF file is created for a Cooling design simulation
BeforeCoolingSimulation (C#)/before_cooling_simulation (Python) is called immediately
before a Cooling design simulation starts

AfterCoolingSimulation (C#)/after_cooling_simulation (Python) is called immediately after
a Cooling design simulation has finished

Optimisation:

CFD

BeforeOptimisationStudy (C#)/before_optimization (Python) is called immediately before
an optimisation study starts

AfterOptimisationStudy (C#)/after_optimisation (Python) is called immediately after an
optimisation study has finished

OnDesignVariableChanged (C#)/on_design_variable_changed (Python) is called when an
optimization design variable of type “Custom Script” is changed before an optimisation
simulation. The id and value of the variable are passed to this hook point. The Id’s start at
10000 and are ordered as they appear in the Design Variables window

Note that optimisation will run multiple simulations and for each simulation the
BeforeEnergyldfGeneration and BeforeEnergySimulation hooks are called

BeforeCfdSimulation (C#)/before_cfd_simulation (Python) is called immediately before a
CFD simulation starts

AfterCfdSimulation (C#)/after_cfd_simulation (Python) is called immediately after a CFD
simulation has finished

Daylight Simulation:

BeforeDaylightSimulation (C#)/before_daylight_simulation (Python) is called immediately
before a daylighting simulation starts

AfterDaylightSimulation (C#)/after_daylight_simulation (Python) is called immediately
after a daylighting simulation has finished

Cost and Carbon

Misc:

BeforeCostAndCarbon (C#)/before_cost_and_carbon (Python) is called immediately before
generating a cost and carbon report

AfterCostAndCarbon (C#)/after_cost_and_carbon (Python) is called immediately after
generating a cost and carbon report

AtCommandLine (C#)/at_command_line (Python) is called when DesignBuilder is run from
the command-line with the argument /process=ExternalCommand_<arg>, where arg is an
optional string that is passed to the hook point

ScreenChanged (C# plugin v2 only) is called when DesignBuilder changes screen. An enum
corresponding to the new screen is passed as an argument.

o DesignBuilder
05/07/22

e ModellLoaded (C# plugin v2 only) is called after a model (dsb file) has been opened or a
new model has been created.

e ModelUnloaded (C# plugin v2 only) is called after a model has been unloaded (the file has
been closed).

Note that before each hook point is called?, for C#, the ActiveBuilding property on IProperties will be
set to the instance of the building that the hook point is called by. For Python, the active_building
global variable will be set. In the case that a building is not currently selected,
ActiveBuilding/active_building will be null.

See section Plugin API Versions for more information on the available plugin versions.

Extending DesignBuilder With Scripts

What is a Script?

A script is a means for users to extend a DesignBuilder simulation by providing custom functionality
via the C# or Python programming languages. A script may modify or report on DesignBuilder’s
internal data at each of the hook points described in section DesignBuilder Hooks.

Unlike a plugin, a script may only interact with DesignBuilder at the defined hook points and only
exist during the lifetime of a simulation.

Scripts are saved with a model in the .dsb file, unlike plugins, which are separate from a model.

Writing a C# Script
To extend DesignBuilder with a script using the C# programming language:

1. Open DesignBuilder, open or create a model and navigate to Tools > Scripts. This will open
the Script Manager.

2. Inthe Script Manager, ensure the Enable scripts option is checked and click on the Script
sub-item, which will open the Select the Script dialog. Here, you can see a list of scripts that
are supplied with DesignBuilder. You will also notice that DesignBuilder supports three types
of scripts; CS-Script, EMS, and Python-Script

EMS scripts do not support the DesignBuilder APl and work differently from CS-Scripts and
Python-Scripts. Documentation for EMS scripts can be found here.

Python-Scripts are not fully supported in DesignBuilder v6.0. Access to the API will be
provided for Python scripts in v6.2.

3. Inthe Select the Script dialog, open the CS-Script tree folder and select any existing script.
From here you may create a new script, or copy or edit the selected script by using the icons
at the bottom of the dialog.

9P

Press the

button to create a new script.

1 Except for ModelLoaded and ModelUnloaded

http://www.designbuilder.co.uk/helpv6.0/#Energy_Management_System_-_EMS.htm

o DesignBuilder
05/07/22

4. The Edit Script window provides a basic text editor into which you can write your code. It is
suggested, however, that an editor more suited to C# development is used to write your
script from which you can copy the code into the Edit Script text box.

Generally, a script will consist of a single class. You may choose to scope your class to a
namespace, but it is not necessary. Copy the following code into the Edit Script text box

public class ExampleScript

{
}

5. Click on the Compile script button in the Info pane and you should see the message “Script
compiled with no errors.” Press the OK button on the message box. The Compile script
button is a convenient way of checking your script is syntactically correct before we run a
simulation.

6. Inorder to enable this script to run during a simulation, make sure the Enable program
checkbox in the Edit Script window is checked. It can be found just above the Edit Script
textbox under the Script header.

7. Press the OK button on the Edit Script window. This will take us back to the Script Manager
window. You should now see your script listed in the tree view of the data pane with a red
circle on its icon. This indicates that the script is enabled and will be run during a simulation.

Infe | Data

vViZ4lax 4P

Script
=95 Script

== C5-5eript
Bg Baszac:ript This scriptis enabled ‘

..... [C5-5cript —

----- S5 EpMet IDF find and replace

----- E‘ Load heating setpaintz from template ta model
----- S5 MuliScript

----- S5 SampleSoript]

----- S5 SampleSoript?

----- S5 SampleSoriptd

----- S5 SampleSoriptd

----- S5 SampleSornipts

m. | w

8. Pressthe OK button on the Script Manager window. Navigate to the Simulation tab in
DesignBuilder and run a new simulation. The simulation should complete as normal.

This is the basic process required to create, write, and enable a script in DesignBuilder. The
script we wrote in step 4, however, doesn’t do a whole lot. In order for the script to be more
useful it needs to hook in to DesignBuilder through various entry points.

o DesignBuilder

05/07/22

9.

10.

11.

12.

Navigate back to the Script Manager and click on the script created in step 4. To edit the

script, click the Edit highlighted item button B, which will take you back to the Edit
Script window, where you can alter the script’s code.

In order for DesignBuilder to pass control of a simulation to a script, a script must expose at
least one of the hook points described in section DesignBuilder Hooks. Each hook point
defines a different stage in a simulation. A script can expose as many hook points as it
chooses.

From a C# point-of-view, a script must implement the DB.Extensibility.Contracts.IScript
interface. This interface declares a method for each hook point that DesignBuilder can call.

Because it’s likely that a script will not want to provide an implementation for every hook
point, a base class (DB.Extensibility.Contracts.ScriptBase) is also provided, which implements
default functionality for the IScript interface.

Add the following code to the existing script:

using DB.Extensibility.Contracts;

public class ExampleScript : ScriptBase, IScript
{
}

The script now does a bit more than the previous version, but not much. Technically, it
exposes all hook points to DesignBuilder, but each is implemented with the default
behaviour provided by DB.Extensibility.Contracts.ScriptBase. The default behaviour of
ScriptBase is to do nothing. To remedy that, the script will have to override one of the
methods. For the purposes of this example override the BeforeSimulation hook point as
follows

using System.Windows.Forms;
using DB.Extensibility.Contracts;

public class ExampleScript : ScriptBase, IScript

{
public override void BeforeEnergySimulation ()
{
MessageBox.Show("Simulation is about to start.");
}
}

Click the Compile script button to make sure the code is syntactically correct, then press the
OK button on the Edit Script window. Now press the OK button on the Script Manager
window and run a new simulation. After the Loading data and Generating IDF stages of
simulation, a messages box should appear as depicted below

o DesignBuilder
05/07/22

-
Please wait

—

_'] i E@ ' .-{

Lf Generating Er

[TILITTI INNEERNNEENNEENI

Simulation is about to start.

_I |

QK
L A

To continue with the simulation press the OK button on the message box.

13. The script is now a fully functioning script that displays a message before simulation starts.
It’s not hard to imagine that this script could be modified to open a more useful window that
allows users to view, or modify certain options before continuing with the simulation.

For more ideas of what can be done with a script please examine the example scripts
provided by default. They can be found in the Script Manager window.

Writing a Python Script
To extend DesignBuilder with a script using the Python programming language:

1. Open DesignBuilder, open or create a model and navigate to Tools > Scripts. This will open
the Script Manager.

2. Inthe Script Manager, ensure the Enable scripts option is checked and click on the Script
sub-item, which will open the Select the Script dialog. Here, you can see a list of scripts that
are supplied with DesignBuilder. You will also notice that DesignBuilder supports three types
of scripts; CS-Script, EMS, and Python-Script.

3. Inthe Select the Script dialog, open the Python-Script tree folder and select any existing
script. From here you may create a new script, or copy or edit the selected script by using
the icons at the bottom of the dialog.

9P

Press the button to create a new script.

4. The Edit Script window provides a basic text editor into which you can write your code. It is
suggested, however, that an editor more suited to Python development is used to write your
script from which you can copy the code into the Edit Script text box.

In order to enable a script to run during a simulation, make sure the Enable program
checkbox in the Edit Script window is checked. It can be found just above the Edit Script
textbox under the Script header.

o DesignBuilder
05/07/22

The Compile script button in the Info pane is a convenient way of checking your script is
syntactically correct before we run a simulation.

5. Press the OK button on the Edit Script window. This will take us back to the Script Manager
window. You should now see your script listed in the tree view of the data pane with a red
circle on its icon. This indicates that the script is enabled and will be run during a simulation.

Info || Data
VA laE 4P
Script L -
R 'E‘ kultiple State Electrochromic Glass with Senszor Groups -

----- 'E‘ Optirnurm gtart heating control [domestic)

----- 'E‘ Optirum gtart heating contral [non-domestic)

- 'E‘ Set external heat tranzfer coefficient

EE—} Puthan-5 cript

----- 'E‘ Python example; Common methods

----- 'E‘ Puthon example; Display meszage box

----- SE[Python example: Eppy find and replace

----- 'E‘ Python example: Import script

----- 'E‘ Python example; Load heating setpoints from template to model
----- 'E‘ Python example: write zsimple repart

----- B Python-S cript ™

m

6. Pressthe OK button on the Script Manager window. Navigate to the Simulation tab in
DesignBuilder and run a new simulation. The simulation should complete as normal.

This is the basic process required to create, write, and enable a script in DesignBuilder. Our
script, however, is empty and doesn’t do a whole lot. In order for the script to be more
useful it needs to hook in to DesignBuilder through various entry points.

7. Navigate back to the Script Manager and click on the script created in step 4. To edit the

script, click the Edit highlighted item button Ig , which will take you back to the Edit
Script window, where you can alter the script’s code.

8. In order for DesignBuilder to pass control of a simulation to a script, a script must expose at
least one of the hook points described in section DesignBuilder Hooks. Each hook point
defines a different stage in a simulation. A script can expose as many hook points as it
chooses.

From a Python point-of-view, all that is required is for a script to define a function with the
same name as one of the hook points.

Add the following code to the existing script:

o DesignBuilder
05/07/22

import ctypes

def before_energy_simulation():
ctypes.windll.user32.MessageBoxh(
0, "Simulation is about to start.”, "Title", 0)

9. Click the Compile script button to make sure the code is syntactically correct, then press the
OK button on the Edit Script window. Now press the OK button on the Script Manager
window and run a new simulation. After the Loading data and Generating IDF stages of
simulation, a messages box should appear as depicted below

-
Please wait

: ' . €
A " e b=
Lf Generating En
[TTLIITI INNEERNNNENNEENI
Simulation is about to start.
_I |
QK
L' A

To continue with the simulation press the OK button on the message box.

10. The script is now a fully functioning script that displays a message before simulation starts.
It’s not hard to imagine that this script could be modified to open a more useful window that
allows users to view, or modify certain options before continuing with the simulation.

For more ideas of what can be done with a script please examine the example scripts
provided by default. They can be found in the Script Manager window.

Importing Other Scripts Into a Script

A DesignBuilder script can import 1 or more other scripts before it is run. This is useful if you want to
combine scripts that may expose different hook points as if it were a single script, or if you want to
store utility classes/methods in some base script, which you can use in other scripts.

In order to import a C# script into another, simply use the directive css_import <other script’s name>
as a comment at the top of the importing script. For example, say “ScriptParent” intends to import
functionality from “ScriptChild”, ScriptParent would include //css import ScriptChild atthe
top of its file (this can be before or after the using statements). For Python, use the from/import
directives. For example, to import a method called “show_message” from “ScriptChild”, ScriptParent
would include from ScriptChild import show message

It is important to note that both the parent script and all child scripts must be enabled in the Script
Manager window.

o DesignBuilder
05/07/22

The name of the script is the one that appears in the Script Manager window with the following
alterations: Any spaces or instances of the characters ‘<’ (less than), ‘>’ (greater than), ‘\’ (back

slash), /" (forward slash), ‘?” (question mark), 2’ (colon), *;’ (semi-colon), "’ (quotation mark), ‘,’
(comma), ‘*’ (asterisks) will be replaced by underscores.

For example, a script with the name “Example: My script”, will need to be imported with the name
“Example__My_script”.

If more than one enabled script implements the same hook point, each one will be executed in
alphabetical order of the class name that implements it (C#), or the filename that implements it
(Python).

Extending DesignBuilder with Plugins

What is a Plugin?

A plugin provides a more complete way of extending DesignBuilder. Plugins are a superset of C#
Scripts so they are able to take advantage of the same hook points that scripts can use with the
addition of being able to add a menu to DesignBuilder’s top-level menu (if they choose).

Unlike scripts, which are interpreted at runtime, plugins are pre-built assemblies that are loaded by
DesignBuilder. This gives the developer more freedom than a script because they are able to
reference other assemblies and nuget packages.

Plugins can be used:

e As a more complete scripting solution. By implementing only the hook points and not
providing a menu structure, a plugin will not be visible to a user but will still be used by
DesignBuilder during a simulation. This is useful if you want to reference third-party
assemblies, or your own libraries in your solution

o To allow for ad-hoc calculations, reports, or modifications to DesignBuilder’s data. Because
plugins can create their own menu in DesignBuilder they do not rely on being called by the
hook points like scripts do. Plugin operations can be called whenever a menu item is pressed

e A more complete extension of DesignBuilder. Because plugins are virtually unrestricted they
may provide a complete GUI-based solution. Whilst they cannot integrate with
DesignBuilder’s GUI, they can launch their own windows and work in a very similar manner
to DesignBuilder’s own Model Data Grid View (which can be found in Tools > Model data
grid view... when the Edit tab is active)

One downside of the plugin system, however, is that plugins are not saved with the .dsb file. If you
therefore want to share a model and a plugin is vital to your work, you will also need to share the
plugin assemblies. Scripts on the other hand are saved with the model.

Writing a Plugin

DesignBuilder loads plugins at start-up from .NET assemblies. Therefore, to develop a plugin you
must create a new .NET class library. It is assumed that you already know how to do this as it is out
of the scope of DesignBuilder’s help.

The example provided here assumes a .NET class library using the C# programming language.

To extend DesignBuilder with a plugin:

o DesignBuilder
05/07/22

1. Communication between DesignBuilder and a plugin as achieved through the DesignBuilder
APl and a plugin-specific interface. It is therefore important that your project assembly
references the DB.Api and DB.Extensibility.Contracts assemblies.

The DB.Api assembly can be found in the “Components/DB.Api” directory of DesignBuilder’s
installation directory. DB.Extensibility.Contracts can be found in the
“Components/DB.Extensibility” directory.

2. DesignBuilder uses Microsoft’s Managed Extensibility Framework (MEF) to locate and load
plugins. Your project assembly must therefore also reference
System.ComponentModel.Composition

3. Now that your project assembly has the correct references it’s time to create a class that
DesignBuilder can interact with. As mentioned, DesignBuilder communicates with a plugin

via a plugin-specific interface, namely DB.Extensibility.Contracts.IPlugin.

Create the following new class in your project

o DesignBuilder
05/07/22

using System;
using DB.Extensibility.Contracts;

namespace DB.Extensibility.Plugins

{
public class ExamplePlugin : PluginBase, IPlugin
{
public bool HasMenu
{
get { throw new NotImplementedException(); }
}
public string MenuLayout
{
get { throw new NotImplementedException(); }
}
public bool IsMenultemVisible(string key)
{
throw new NotImplementedException() ;
}
public bool IsMenultemEnabled(string key)
{
throw new NotImplementedException() ;
}
public void OnMenultemPressed(string key)
{
throw new NotImplementedException() ;
}
public void Create()
{
throw new NotImplementedException() ;
}
}
}

Here, ExamplePlugin inherits IPlugin and PluginBase, both of which are provided by
DB.Extensibilty.Contracts. IPlugin is the interface that DesignBuilder uses to communicate
with a plugin and declares methods for plugin creation/initialisation, methods for the
description and interaction of a plugin’s menu, and methods relating to the various
simulation hook points as described in section DesignBuilder Hooks.

PluginBase provides default implementations of the simulation hook points. Inheriting from
PluginBase is not required, but it’s useful if don’t intend to use the simulation hook points.

Note: The choice of namespace and class names are arbitrary.

4. DesignBuilder uses MEF to locate and load plugins. To make your plugin MEF aware, add the
following code:

o DesignBuilder
05/07/22

using System;
using System.ComponentModel.Composition;
using DB.Extensibility.Contracts;

namespace DB.Extensibility.Plugins

{
[Export (typeof (IPlugin))]
public class ExamplePlugin : PluginBase, IPlugin
{
public bool HasMenu
{
get { throw new NotImplementedException(); }
}
}
}

If you are unfamiliar with MEF, the new code tells MEF that the ExamplePlugin class should
be made available to an importer as something that implements IPlugin.

5. The plugin is now properly configured with the required references, implements the
required interface, provides default implementations for each simulation hook point, and is
publically available to DesignBuilder for import. For all intents and purposes it is a valid
plugin that can be loaded and used by DesignBuilder.

Nevertheless, as it’s currently implemented, the plugin is not very useful. To make it more
useful we’ll create a menu structure that will appear in DesignBuilder’s top-level menu. The
menu will have only 1 item, which will display a message box when pressed.

A plugin’s menu structure is described by a custom description language that is returned to
DesignBuilder as a string via IPlugin.MenulLayout. The description language has the following
rules:

e The “*’(asterisk) character indicates a new menu item

e Zero or more ‘>’ characters indicate the indentation level of the menu item

e The‘,’ (comma) character indicates the split between the menu item’s name as will
be displayed in DesignBuilder and the item’s id (or key), which will be used in
communication between DesignBuilder and the plugin. The text preceding the ‘,’
(and after any “*’ or >’ characters) is the displayed name, and the text proceeding
the ‘, is the menu item’s id

Example 1: The string “*Test Plugin,root*>Item 1,i1*>>Sub-item A,1a” would
create a menu structure that looks like:

Test Plugin (key
-- Item 1 (key
-- Sub-item A (key

root)
i1)
1a)

o DesignBuilder
05/07/22

If a user press Sub-item A, DesignBuilder would inform the plugin by passing key “1a” to
IPlugin.OnMenultemPressed.

Example 2: The string “*Test Plugin,root*>Item 1,il*>Item 2,i2” would createa
menu structure that looks like:

Test Plugin (key = root)
-- Item 1 (key = i1)
-- Item 2 (key = i2)

As well as Menulayout, IPlugin declares 4 other methods that are used in the creation and
usage of a plugin’s menu. They are:

e HasMenu, which simply returns whether the plugin has a menu or not. If this
returns false, the other menu-related methods will not be called

e IsMenultemVisible returns whether a given menu item is currently visible or not.
This is called when the plugin is first loaded and every time a menu item has been
pressed

e |IsMenultemEnabled returns whether a given menu item is currently enabled or
not. This is called when the plugin is first loaded and every time a menu item has
been pressed

e OnMenultemPressed is called when a user selects one of the plugin’s menu items.
The key of the menu item (as defined by MenuLayout) is passed to the method to
indicate which item has been pressed

Note that because IsMenultemVisible and IsMenultemEnabled are called every time a menu
item has been pressed, a plugin can include logic to dynamically change the structure of its
menu by changing the visibility of menu items in response to user actions. This is described
in more detail in section Writing a Plugin With a Dynamic Menu.

Using what we’ve learned, it’s now possible to add a menu with 1 item that displays a
message box when pressed, to the example plugin. The code looks like this:

05/07/22

using System.ComponentModel.Composition;
using System.Text;

using System.Windows.Forms;

using DB.Extensibility.Contracts;

namespace DB.Extensibility.Plugins
{
[Export (typeof (IPlugin))]
public class ExamplePlugin : PluginBase, IPlugin
{
class MenuKeys

{

public const string Root = "root'";

o DesignBuilder

public const string ShowMessage = "showMessage";

}

public bool HasMenu

{
get

{

return true;

}
}

public string MenuLayout

{
get

{

StringBuilder menu = new StringBuilder();

menu.AppendFormat (

"*Example Plugin, {0}", MenuKeys.Root) ;

menu.AppendFormat (

"*>Show Message, {0}", MenuKeys.ShowMessage) ;

return menu.ToString () ;

}

public bool IsMenultemVisible(string key)
{

return true;

}

public bool IsMenultemEnabled(string key)
{

return true;

}

public void OnMenultemPressed(string key)
{
if (key == MenuKeys.ShowMessage)
{
MessageBox.Show ("Menu item pressed!");
}
}

public void Create()
{
}

o DesignBuilder
05/07/22

6. Before continuing with the example, notice the IPlugin.Create method. This method is the
first method called after DesignBuilder has loaded a plugin. It is only called once and can be
used to initialise a plugin.

If a plugin is to use the DesignBuilder APl outside of the simulation hook methods (which are
all passed an instance of the API), it is recommend that the Api.Environment object is stored
as a member variable of the plugin at this point.

7. Continuing on, once the plugin has been built, the only thing left to do is to copy the
assembly to a location that DesignBuilder expects to find plugins.

Navigate to your local application data folder (usually, this can be found at
C:\Users\username\AppData\Local\DesignBuilder, where “username” is your user name.
The AppData directory may be hidden in which case you’ll have to enable “Show hidden
files, folders, and drives” in Windows Control Panel > Folder Options > View).

If there is no sub-directory called “User Plugins”, create one.

Each plugin assembly should be placed into its own directory in the “DesignBuilder/User
Plugins” directory (the name of the directory does not matter). Note that DB.Api.dll and
DB.Extensibility.Contracts.dll must also be present in this directory as well as any external
assembilies that your plugin replies upon (E.G. EPNet.dll)

DesignBuilder will load all assemblies that export a class that implements IPlugin via MEF. If
you do not wish a plugin to be loaded it must be removed from the User Plugins directory

(or the Export class attribute can be removed and the plugin assembly rebuilt).

If everything went according to plan, you should see the following when you start
DesignBuilder:

ldy DesignBuilder S5

File Edit Go Tools |Example Plugin] Help

DEE® F X (G% 6

DesignBuilder Data

Recent Files || Component Librares || Template Librares

8. Pressing Example Plugin > Show Message should display a message box with the message
“Menu item pressed!”.

Writing a Plugin With a Dynamic Menu

Following on from section Writing a Plugin, this section will show you how to exploit
IPlugin.IsMenultemVisible and IPlugin.IsMenultemEnabled to create a menu that can change based
on user interaction.

05/07/22

o DesignBuilder

This section assumes you’ve already read Writing a Plugin and will therefore not explain the process
in as much detail.

1.

2.

For this plugin, we are going to create a menu that can change the visibility and state of its
menu items based on the user’s interaction. As a base we will start with the following code:

[Export (typeof (IPlugin))]
public class ExamplePlugin : PluginBase, IPlugin
{

class MenuKeys

{
public const string Root = "root";
}
public bool HasMenu
{
get
{
return true;
}
}
public string MenuLayout
{
get
{
StringBuilder menu = new StringBuilder();
menu.AppendFormat (
"*Example Plugin, {0}", MenuKeys.Root)
return menu.ToString() ;
}
}

public bool IsMenultemVisible(string key)
{

return true;

}

public bool IsMenultemEnabled(string key)
{

return true;

}

public void OnMenultemPressed(string key)

{
}

public void Create()
{
}

It’s important to understand that when DesignBuilder loads a plugin for the first time, it will
call IPlugin.HasMenu followed by IPlugin.MenulLayout (assuming HasMenu return true). This
process is only carried out once because DesignBuilder needs to know the complete menu

layout before it displays it’s GUI. IPlugin.IsMenultemVisible and IPlugin.IsMenultemEnabled,

however, are called throughout the lifetime of the plugin.

05/07/22

o DesignBuilder

This is important because it means that IPlugin.MenulLayout must return the complete menu
structure to DesignBuilder and only through toggling visibility can the structure be changed.

With that in mind, add the following code to the plugin:

[Export (typeof (IPlugin))]
public class ExamplePlugin : PluginBase, IPlugin

{
class MenuKeys
{
public const string Root = "root";
public const string State = "state';
public const string Visibility = "visibility";
public const string EnableAll = "enableAll™;
public const string DisableAll = "disableAll™;
public const string VisibleAll = "visibleAll";
public const string InvisibleAll = "invisibleAll";
}
public string MenuLayout
{
get
{
StringBuilder menu = new StringBuilder();
menu.AppendFormat (
"*Example Plugin, {0}", MenuKeys.Root) ;
menu.AppendFormat (
"*>State, {0}", MenuKeys.State);
menu.AppendFormat (
"*>>Fnable AL1l,{0}", MenuKeys.EnableAll);
menu.AppendFormat (
"*>>Disable A11l, {0}", MenuKeys.DisableAll)
menu.AppendFormat (
"*>Visibility,{0}", MenuKeys.Visibility);
menu.AppendFormat (
"*>>Make All Visible, {0}", MenuKeys.VisibleAll);
menu.AppendFormat (
"*>>Make All Invisible, {0}", MenuKeys.InvisibleAll);
return menu.ToString() ;
}
}
}

3. Now the menu structure is defined the plugin will need some way of keeping track of the
state of each menu item. I.E. Whether or not a menu item is visible or enabled. This can be
done however you like, but in this example we shall create a simple class and a dictionary:

05/07/22

Notice that IPlugin.Create is used to initialise the plugin. You could do this in the constructor

using System.Collections.Generic;

[Export (typeof (IPlugin))]

public class ExamplePlugin

class Menultem

public bool IsEnabled { get;
public bool IsVisible { get;

public MenulItem(

bool enabled = true,

bool visible = true)
{

IsEnabled = enabled;

IsVisible = visible;
}

PluginBase,

set;
set;

o DesignBuilder

IPlugin

}
}

private readonly Dictionary<string, Menultem> mMenultems =
new Dictionary<string,Menultem>() ;

public void Create()

{
{
}
{
}
}

mMenultems
mMenultems
mMenultems
mMenultems
mMenultems
mMenultems
mMenultems

.Add (MenuKeys
.Add (MenuKeys
.Add (MenuKeys
.Add (MenuKeys
.Add (MenuKeys
.Add (MenuKeys
.Add (MenuKeys.

if you prefer.

.Root,
.State,

new Menultem());

InvisibleAll,

new Menultem());

.Visibility, new Menultem())
.EnableAll,
.DisableAll,
.VisibleAll,

new Menultem());
new Menultem());
new Menultem());
new Menultem());

4. IPlugin.IsMenultemVisble and IPlugin.IsMenultemEnabled can now simply return the
IsVisible or IsEnabled properties of the specific menu item like so:

o DesignBuilder
05/07/22

[Export (typeof (IPlugin))]
public class ExamplePlugin : PluginBase, IPlugin

{
public bool IsMenultemVisible(string key)
{
return mMenultems[key].IsVisible;
}
public bool IsMenultemEnabled(string key)
{
return mMenultems[key].IsEnabled;
}
}

5. The menu structure is defined, the plugin has a means of keeping track of each menu item’s
state, and it can now report the state back to DesignBuilder. All that remains is to actually
change the state of a menu item depending on the actions of the user.

Since each menu item will have a different action when pressed by the user, we will add a
property to the nested Menultem class to represent this:

class Menultem

{
public Action Action { get; set; }
public bool IsEnabled { get; set; }
public bool IsVisible { get; set; }
public MenulItem(
Action action = null,
bool enabled = true,
bool visible = true)
{
Action = action ?? delegate{};
IsEnabled = enabled;
IsVisible = visible;
}
}

And then initialise each menu item with an appropriate action:

o DesignBuilder
05/07/22

public class ExamplePlugin : PluginBase, IPlugin

{
public void Create()
{
mMenuItems.Add (MenuKeys.Root,
new Menultem());
mMenultems.Add (MenuKeys.State,
new Menultem()) ;
mMenuItems.Add (MenuKeys.Visibility,
new Menultem()) ;
mMenultems.Add (MenuKeys.EnableAll,
new Menultem(OnEnableAll));
mMenuItems.Add(MenuKeys.DisableAll,
new Menultem(OnDisableAll));
mMenuItems.Add(MenuKeys.VisibleAll,
new Menultem(OnVisibleAll));
mMenultems.Add (MenuKeys.InvisibleAll,
new Menultem(OnInvisibleAll));
}
private void OnEnableAll ()
{
mMenulItems[MenuKeys.DisableAll].IsEnabled = true;
mMenultems [MenuKeys.Visibility].IsEnabled = true;
}
private void OnDisableAll ()
{
// don't disable EnableAll
mMenulItems[MenuKeys.DisableAll].IsEnabled = false;
mMenulItems[MenuKeys.Visibility].IsEnabled = false;
}
private void OnVisibleAll ()
{
mMenultems[MenuKeys.InvisibleAll].IsVisible = true;
mMenulItems[MenuKeys.State].IsVisible = true;
}
private void OnInvisibleAll ()
{
// don't make VisibleAll invisible
mMenulItems[MenuKeys.InvisibleAll].IsVisible = false;
mMenultems [MenuKeys.State] .IsVisible = false;
}
}

Note that changing the visibility or enabled state of a parent menu item also affects the
state of its children. E.G. OnDisableAll changes MenuKeys.Visibility’s enabled state to false,
which results in MenuKeys.VisibleAll and MenuKeys.InvisibleAll also being disabled.

6. Each relevant menu item now has an appropriate action or a default action to do nothing.
The final piece in the puzzle is to forward IPlugin.OnMenultemPressed to the correct menu
item’s action as follows:

o DesignBuilder
05/07/22

[Export (typeof (IPlugin))]
public class ExamplePlugin : PluginBase, IPlugin

{
public void OnMenultemPressed(string key)
{
mMenultems[key].Action () ;
}
}

7. The plugin is now complete and can be copied to the User Plugin directory as described in
section Writing a Plugin item 7. Upon starting DesignBuilder the plugin should be loaded and
you can see how pressing Example Plugin > Visibility > Make All Invisible changes the
structure of the menu (from the user’s point-of-view).

Plugin API Versions

When new plugin hookpoints are introduced a new plugin interface is created, which inherits the
previous plugin interface. This ensures that plugins that support an older interface will still work
without the plugin author having to change their code.

From v7.1.1 DesignBuilder supports two plugin interfaces, IPlugin and IPlugin2. In addition to
supporting all IPlugin’s hook points, IPlugin2 adds three new hook points — ScreenChanged,
ModellLoaded, and ModelUnloaded. For your plugin to take advantage of the latest APl you must
define your plugin class accordingly:

[Export (typeof (IPlugin2))]

public class ExamplePlugin : PluginBase2, IPlugin2
{

}

IPlugin supported hook points
void BeforeEnergyIdfGeneration () ;
void BeforeEnergySimulation () ;
void AfterEnergySimulation () ;
void BeforeHeatingIdfGeneration();
void BeforeHeatingSimulation () ;
void AfterHeatingSimulation () ;
void BeforeCoolingIdfGeneration();
void BeforeCoolingSimulation () ;
void AfterCoolingSimulation () ;
void BeforeDaylightSimulation () ;
void AfterDaylightSimulation();
void BeforeCfdSimulation();
void AfterCfdSimulation () ;
void BeforeOptimisationStudy () ;
void AfterOptimisationStudy();
void OnDesignVariableChanged (int variableId, string value);
void BeforeCostAndCarbon () ;
void AfterCostAndCarbon () ;
void AtCommandLine (string arg);

o DesignBuilder
05/07/22

IPlugin2 supported hook points (in addition to all IPlugin hook points)

void ModelLoaded() ;
void ModelUnloaded() ;
voilid ScreenChanged (ScreenCode screenCode);

